Understanding spike-triggered covariance using Wiener theory for receptive field identification.
نویسندگان
چکیده
Receptive field identification is a vital problem in sensory neurophysiology and vision. Much research has been done in identifying the receptive fields of nonlinear neurons whose firing rate is determined by the nonlinear interactions of a small number of linear filters. Despite more advanced methods that have been proposed, spike-triggered covariance (STC) continues to be the most widely used method in such situations due to its simplicity and intuitiveness. Although the connection between STC and Wiener/Volterra kernels has often been mentioned in the literature, this relationship has never been explicitly derived. Here we derive this relationship and show that the STC matrix is actually a modified version of the second-order Wiener kernel, which incorporates the input autocorrelation and mixes first- and second-order dynamics. It is then shown how, with little modification of the STC method, the Wiener kernels may be obtained and, from them, the principal dynamic modes, a set of compact and efficient linear filters that essentially combine the spike-triggered average and STC matrix and generalize to systems with both continuous and point-process outputs. Finally, using Wiener theory, we show how these obtained filters may be corrected when they were estimated using correlated inputs. Our correction technique is shown to be superior to those commonly used in the literature for both correlated Gaussian images and natural images.
منابع مشابه
Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells
The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morpholo...
متن کاملReceptive field characterization by spike-triggered independent component analysis.
The spikes generated by a neuron in response to stimuli provide information about the nature of the stimuli and also about the functional organization of the circuit in which the neuron is embedded. Spike-triggered analysis techniques such as spike-triggered covariance (STC) have been proposed to characterize the receptive field properties of neurons. So far, they have been able to provide only...
متن کاملReceptive Fields without Spike-Triggering
Stimulus selectivity of sensory neurons is often characterized by estimating their receptive field properties such as orientation selectivity. Receptive fields are usually derived from the mean (or covariance) of the spike-triggered stimulus ensemble. This approach treats each spike as an independent message but does not take into account that information might be conveyed through patterns of n...
متن کاملLearning Quadratic Receptive Fields from Neural Responses to Natural Stimuli
Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron i...
متن کاملEfficient and direct estimation of a neural subunit model for sensory coding
Many visual and auditory neurons have response properties that are well explained by pooling the rectified responses of a set of spatially shifted linear filters. These filters cannot be estimated using spike-triggered averaging (STA). Subspace methods such as spike-triggered covariance (STC) can recover multiple filters, but require substantial amounts of data, and recover an orthogonal basis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2015